123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106 |
- ## k-means with replicatable seeds
- my_kmeans = function(iter.max=1E3, nstart=50, ...)
- {
- set.seed(1)
- res = kmeans(iter.max=iter.max, nstart=nstart, ...)
- return(res)
- }
- ## This function tries to adjust the height of each split, in order to generate a valid hclust object and with balanced compartments A.1 A.2 B.1 B.2
- ## Clusters with more nodes will get bigger height in case of same height
- adjust_hs <- function(l_r_h)
- {
- hs = sapply(l_r_h, function(v) v$h)
- all_names = sapply(l_r_h, function(v) paste0(collapse='_', sort(c(v$l, v$r))))
- r_names = sapply(l_r_h, function(v) paste0(collapse='_', sort(c(v$r))))
-
- sizes = sapply(l_r_h, function(v) length(v$l) + length(v$r)) ##
- ################ This part deals with duplicated heights
- hs = hs + sizes*1E-7
- ################ This part tries to make the top-level left and right branch to have similar height, such that to make balanced A.1, A.2, B.1, B.2 compartments
- ## Find the index of second branch, whose number of nodes is n_total - n_left: sizes[1] - sizes[2]
- l_b = 2 ## left sub-branch
- # r_b = which(sizes==(sizes[1] - sizes[2]))[1] ## right sub-branch
- r_b = which(r_names[1]==all_names) ## right sub-branch
- l_h = hs[l_b]
- r_h = hs[r_b]
- max_h = max(l_h, r_h) ## the maximum height of the two branches
- hs_new = mean(sort(hs, decreasing=TRUE)[2:3]) ## hs_new is the 3rd largest height
- hs[l_b] = ifelse(l_h > r_h, max_h, hs_new)
- hs[r_b] = ifelse(r_h > l_h, max_h, hs_new)
- if(any(duplicated(hs))) stop('ERROR: DUPLICATED HEIGHTS exist in bisecting_kmeans')
- return( hs )
- }
- bisecting_kmeans <- function(data)
- {
- dist_mat = as.matrix(stats::dist(data))
- indices = 1:nrow(data)
- l_r_h <<- list()
- get_h <- function(l_indices, r_indices)
- {
- combined_indices = c(l_indices, r_indices)
- idx <- as.matrix(expand.grid(combined_indices, combined_indices))
- max(dist_mat[idx]) ## diameter
- }
- get_sub_tree <- function( indices )
- {
- n_nodes = length(indices)
- if(n_nodes==1) ## if only two nodes
- {
- h = NULL
- # tree = list(h=h, leaf=indices)
- return()
- }
- ############# if more than two nodes
- if(n_nodes==2) cluster=c(1,2) else cluster = my_kmeans(x=data[indices, ], centers=2)$cluster
- l_indices = indices[cluster==1]
- r_indices = indices[cluster==2]
- h = get_h(l_indices, r_indices)
- l_r_h <<- c(l_r_h, list(list(l=l_indices, r=r_indices, h=h)))
- # cat(h, '\n')
- l_branch = get_sub_tree( l_indices )
- r_branch = get_sub_tree( r_indices )
- # tree = list(h=h, l_branch=l_branch, r_branch=r_branch, l_indices=l_indices, r_indices=r_indices)
- # return(tree)
- }
- get_sub_tree(indices)
- hs = adjust_hs(l_r_h)
- r_hs = rank(hs)
- for( i in 1:length(l_r_h) ) {name=r_hs[i]; names(name)=paste0(collapse='_', sort(c(l_r_h[[i]]$l, l_r_h[[i]]$r))); l_r_h[[i]]$name=name}
- pos_names = sapply(l_r_h, function(v) v$name)
- neg_names = -(1:length(indices)); names(neg_names) = 1:length(indices); all_names = c(pos_names, neg_names)
- for( i in 1:length(l_r_h) ) {l_r_h[[i]]$l_name=unname(all_names[paste0(l_r_h[[i]]$l, collapse='_')]); l_r_h[[i]]$r_name=unname(all_names[paste0(l_r_h[[i]]$r, collapse='_')]) }
-
- merge_height = data.frame(l=sapply(l_r_h, function(v) v$l_name), r=sapply(l_r_h, function(v) v$r_name), h=hs)
- merge_height = merge_height[order(merge_height$h), ]
- rownames(merge_height) = NULL
-
- data_tmp = cbind(c(0,0,1,1), c(0,1,1,0))
- hc = hclust(stats::dist(data_tmp), "com")
- hc$merge = as.matrix(unname(merge_height[,1:2]))
- hc$height = merge_height$h
- # hc$order = unname(unlist(res, recursive=TRUE)[grepl('leaf', names(unlist(res, recursive=TRUE)))])
- # hc$order = 1:length(indices)
- hc$labels = 1:length(indices)
- den <- as.dendrogram(hc)
- hc_r <- as.hclust(reorder(den, 1:length(indices)))
- hc_r$method = "complete"
- hc_r$dist.method = "euclidean"
- l_r_h <<- list()
- rm(l_r_h)
- return(hc_r)
- }
-
|